z-logo
open-access-imgOpen Access
Risk of Cardiac Arrhythmias During Hypoglycemia in Patients With Type 2 Diabetes and Cardiovascular Risk
Author(s) -
Elaine Chow,
Alan Bernjak,
S. Williams,
Robert A. Fawdry,
Steve Hibbert,
Jenny Freeman,
Paul Sheridan,
Simon Heller
Publication year - 2014
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db13-0468
Subject(s) - medicine , hypoglycemia , type 2 diabetes , diabetes mellitus , cardiology , endocrinology
Recent trials of intensive glycemic control suggest a possible link between hypoglycemia and excess cardiovascular mortality in patients with type 2 diabetes. Hypoglycemia might cause arrhythmias through effects on cardiac repolarization and changes in cardiac autonomic activity. Our aim was to study the risk of arrhythmias during spontaneous hypoglycemia in type 2 diabetic patients with cardiovascular risk. Twenty-five insulin-treated patients with type 2 diabetes and a history of cardiovascular disease or two or more risk factors underwent simultaneous continuous interstitial glucose and ambulatory electrocardiogram monitoring. Frequency of arrhythmias, heart rate variability, and markers of cardiac repolarization were compared between hypoglycemia and euglycemia and between hyperglycemia and euglycemia matched for time of day. There were 134 h of recording at hypoglycemia, 65 h at hyperglycemia, and 1,258 h at euglycemia. Bradycardia and atrial and ventricular ectopic counts were significantly higher during nocturnal hypoglycemia compared with euglycemia. Arrhythmias were more frequent during nocturnal versus daytime hypoglycemia. Excessive compensatory vagal activation after the counterregulatory phase may account for bradycardia and associated arrhythmias. QT intervals, corrected for heart rate, >500 ms and abnormal T-wave morphology were observed during hypoglycemia in some participants. Hypoglycemia, frequently asymptomatic and prolonged, may increase the risk of arrhythmias in patients with type 2 diabetes and high cardiovascular risk. This is a plausible mechanism that could contribute to increased cardiovascular mortality during intensive glycemic therapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom