ER Stress as a Trigger for β-Cell Dysfunction and Autoimmunity in Type 1 Diabetes
Author(s) -
Bryan O’Sullivan-Murphy,
Fumihiko Urano
Publication year - 2012
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db12-0091
Subject(s) - diabetes mellitus , autoimmunity , medicine , type 1 diabetes , insulin , unfolded protein response , type 2 diabetes , insulin resistance , endocrinology , pancreatic islets , disease , immunology , endoplasmic reticulum , islet , biology , microbiology and biotechnology
Type 1 diabetes is an autoimmune disease characterized by the destruction of pancreatic β-cells and an absolute deficiency of insulin. Patients with type 1 diabetes are insulin dependent for life and require multiple daily insulin injections or the use of an insulin pump. It has been considered that β-cell dysfunction and death in type 1 diabetes results from a combination of inflammation, autoimmunity, β-cell stress, and insulin resistance (1–5). Clinical and experimental evidence has indicated that defects in β-cell function precede the massive death of β-cells by severe infiltration of T cells into the islets and the clinical onset of type 1 diabetes (6–9). However, the mechanisms involved in β-cell dysfunction before the onset of clinical type 1 diabetes are unclear. In this issue of Diabetes , Tersey et al. (10) add a new dimension to the progression of type 1 diabetes by demonstrating that endoplasmic reticulum (ER) stress in β-cells precedes the clinical onset of type 1 diabetes.The ER performs a number of important cellular tasks, including protein folding, calcium regulation, redox regulation, and life or death decisions (11,12). Within the β-cell, insulin production and secretion depend on the processing capacity of the …
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom