z-logo
open-access-imgOpen Access
An ATP-Binding Mutation (G334D) in KCNJ11 Is Associated With a Sulfonylurea-Insensitive Form of Developmental Delay, Epilepsy, and Neonatal Diabetes
Author(s) -
Ricard Masia,
Joseph C. Koster,
Stefano Tumini,
Francesco Chiarelli,
Carlo Colombo,
Colin G. Nichols,
Fabrizio Barbetti
Publication year - 2007
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db06-1275
Subject(s) - sulfonylurea , sulfonylurea receptor , endocrinology , medicine , mutation , kir6.2 , diabetes mellitus , chemistry , biology , protein subunit , glibenclamide , genetics , gene
Mutations in the pancreatic ATP-sensitive K(+) channel (K(ATP) channel) cause permanent neonatal diabetes mellitus (PNDM) in humans. All of the K(ATP) channel mutations examined result in decreased ATP inhibition, which in turn is predicted to suppress insulin secretion. Here we describe a patient with severe PNDM, which includes developmental delay and epilepsy, in addition to neonatal diabetes (developmental delay, epilepsy, and neonatal diabetes [DEND]), due to a G334D mutation in the Kir6.2 subunit of K(ATP) channel. The patient was wholly unresponsive to sulfonylurea therapy (up to 1.14 mg . kg(-1) . day(-1)) and remained insulin dependent. Consistent with the putative role of G334 as an ATP-binding residue, reconstituted homomeric and mixed WT+G334D channels exhibit absent or reduced ATP sensitivity but normal gating behavior in the absence of ATP. In disagreement with the sulfonylurea insensitivity of the affected patient, the G334D mutation has no effect on the sulfonylurea inhibition of reconstituted channels in excised patches. However, in macroscopic rubidium-efflux assays in intact cells, reconstituted mutant channels do exhibit a decreased, but still present, sulfonylurea response. The results demonstrate that ATP-binding site mutations can indeed cause DEND and suggest the possibility that sulfonylurea insensitivity of such patients may be a secondary reflection of the presence of DEND rather than a simple reflection of the underlying molecular basis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom