α1-Antitrypsin Protects β-Cells From Apoptosis
Author(s) -
Bin Zhang,
Yuanqing Lu,
Martha CampbellThompson,
T Spencer,
Clive Wasserfall,
Mark A. Atkinson,
Sihong Song
Publication year - 2007
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db06-1273
Subject(s) - apoptosis , streptozotocin , islet , tumor necrosis factor alpha , in vivo , beta cell , programmed cell death , nod , cytokine , biology , cell , necrosis , diabetes mellitus , type 1 diabetes , cancer research , microbiology and biotechnology , pharmacology , immunology , endocrinology , medicine , biochemistry
β-Cell apoptosis appears to represent a key event in the pathogenesis of type 1 diabetes. Previous studies have demonstrated that administration of the serine proteinase inhibitor α1-antitrypsin (AAT) prevents type 1 diabetes development in NOD mice and prolongs islet allograft survival in rodents; yet the mechanisms underlying this therapeutic benefit remain largely unclear. Herein we describe novel findings indicating that AAT significantly reduces cytokine- and streptozotocin (STZ)-induced β-cell apoptosis. Specifically, strong antiapoptotic activities for AAT (Prolastin, human) were observed when murine insulinoma cells (MIN6) were exposed to tumor necrosis factor-α. In a second model system involving STZ-induced β-cell apoptosis, treatment of MIN6 cells with AAT similarly induced a significant increase in cellular viability and a reduction in apoptosis. Importantly, in both model systems, treatment with AAT completely abolished induced caspase-3 activity. In terms of its activities in vivo, treatment of C57BL/6 mice with AAT prevented STZ-induced diabetes and, in agreement with the in vitro analyses, supported the concept of a mechanism involving the disruption of β-cell apoptosis. These results propose a novel biological function for this molecule and suggest it may represent an effective candidate for attempts seeking to prevent or reverse type 1 diabetes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom