z-logo
open-access-imgOpen Access
Role of Excess Glycogenolysis in Fasting Hyperglycemia Among Pre-Diabetic and Diabetic Zucker (fa/fa) Rats
Author(s) -
Eunsook S. Jin,
ByungHyun Park,
A. Dean Sherry,
Craig R. Malloy
Publication year - 2007
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db06-0717
Subject(s) - glycogenolysis , medicine , endocrinology , gluconeogenesis , glycogen , citric acid cycle , chemistry , metabolism , biology
Sources of plasma glucose and glucose turnover were investigated in 8-week-old (pre-diabetic) and 13-week-old (diabetic) Zucker (fa/fa) rats after a 24-h fast. Intraperitoneal (2)H(2)O was administered and [3,4-(13)C(2)]glucose and [U-(13)C(3)]propionate were infused into conscious active rats. (13)C nuclear magnetic resonance analysis of monoacetone glucose derived from blood glucose indicated that glucose production was increased significantly in 8- and 13-week-old fa/fa rats compared with age-matched Zucker (+/+) rats, and hepatic glycogen was dramatically higher among fa/fa animals regardless of age. Glycogenolysis, essentially 0 in +/+ rats after a 24-h fast, was significant in fa/fa rats (11 +/- 6 and 17 +/- 7% of glucose production in 8- and 13-week-old rats, respectively), even after a 24-h fast. Tricarboxylic acid (TCA) cycle flux and efflux of carbon skeletons from the cycle (cataplerosis) were both significantly higher in fa/fa rats compared with controls, but net gluconeogenesis from the TCA cycle was not higher because products leaving the cycle were returned to the cycle via a pyruvate cycling pathway. Thus, pyruvate cycling flux increased in proportion to TCA cycle flux, leaving net gluconeogenesis unchanged in fa/fa animals compared with control animals. The distribution of (2)H in skeletal muscle glycogen suggested that at least a fraction of glucose molecules entering glycogen pass through phosphomannose isomerase.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom