z-logo
open-access-imgOpen Access
Fast grid-based nonlinear elasticity for 2D deformations
Author(s) -
Rajsekhar Setaluri,
Yu Wang,
Nathan Mitchell,
Ladislav Kavan,
Eftychios Sifakis
Publication year - 2015
Language(s) - English
DOI - 10.2312/sca.20141124
We present a deformation technique that constructs 2D warps by using spline curves to specify the starting and target shapes of selected key contours. We generate a two-dimensional deformation map from these contours by simulating a non-linear elastic membrane deforming in accordance with user-specified constraints. Although we support and demonstrate elastic models inspired by physical membranes, we highlight a custom material model for this specific application, which combines the benefits of harmonic interpolation and area-preserving deformations. Our warps are represented via a standard Cartesian lattice and leverage the regularity of this description to enable efficient computation. Specifically, our method resolves the targeting constraints imposed along arbitrarily shaped contours with sub-grid cell precision, without requiring an explicit remeshing of the warp lattice around the constraint curve. We describe how to obtain a well-conditioned discretization of our membrane model even under elaborate constraints and strict area preservation demands, and present a multigrid solver for the efficient numerical solution of the deformation problem.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom