Concepts and allgorithms for the deformation, analysis, and compression of digital shapes
Author(s) -
Christoph von Tycowicz
Publication year - 2014
Language(s) - English
DOI - 10.2312/8332
This thesis concerns model reduction techniques for the efficient numerical treatment of physical systems governing the deformation behavior of geometrically complex shapes. We present new strategies for the construction of simplified, low-dimensional models that capture the main features of the original complex system and are suitable for use in interactive computer graphics applications. To demonstrate the effectiveness of the new techniques we propose frameworks for real-time simulation and interactive deformation-based modeling of elastic solids and shells and compare them to alternative approaches. In addition, we investigate differential operators that are derived from the physical models and hence can serve as alternatives to the Laplace-Beltrami operator for applications in modal shape analysis. Furthermore, this thesis addresses the compression of digital shapes. In particular, we present a lossless compression scheme that is adapted to the special characteristics of adaptively refined, hierarchical meshes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom