z-logo
open-access-imgOpen Access
Glutathione Effects on Toxicity and Uptake of Mercuric Chloride and Sodium Arsenite in Rabbit Renal Cortical Slices
Author(s) -
Carmen A. Burton,
Kristina M. Hatlelid,
Kevin Divine,
Dean E. Carter,
Quintus Fernaǹdo,
Klaus Brendel,
Andrea Gandolfi
Publication year - 1995
Publication title -
environmental health perspectives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.257
H-Index - 282
eISSN - 1552-9924
pISSN - 0091-6765
DOI - 10.2307/3432019
Subject(s) - glutathione , toxicity , sodium arsenite , arsenite , chemistry , sodium , rabbit (cipher) , environmental chemistry , toxicology , pharmacology , biochemistry , arsenic , biology , enzyme , statistics , mathematics , organic chemistry
The mechanism of renal uptake of nephrotoxic heavy metals such as HgCl2 and NaAsO2 is not clear. The metals are known to react with endogenous sulfhydryls such as glutathione (GSH), so metal-GSH conjugates may be delivered to the kidney. To study this possibility, renal cortical slices from male New Zealand white rabbits were incubated with 10(-4) M HgCl2 or 10(-3) M NaAsO2 +/- stoichiometric amounts (1-3x) of GSH; or synthetic metal-GSH conjugates [10(-4) M Hg(SG)2 or 10(-3) M As(SG)3]. Incubations were performed at 37 degrees C in DME-F12 buffer (95/5 O2/CO2) for 8 hr. Hg(SG)2 reduced slice K+/DNA content, as an indicator of viability, significantly less than HgCl2. As(SG)3 exhibited a 2-hr delay in K+/DNA content reduction compared to NaAsO2. This delay in toxicity was not correlated to changes in uptake. Arsenic and mercury accumulation, determined by proton-induced X-ray emission, were also identical between the metal salts and the metal-GSH conjugates. Exogenous GSH decreased HgCl2 cytotoxicity and was correlated to a decrease in Hg accumulation in the slice. Exogenous GSH had limited if any protective effects against cytotoxicity by NaAsO2 and a decrease in As accumulation was not observed. Complex metal-GSH interactions appear to exist and impact on the uptake and toxicity of these metals.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom