z-logo
open-access-imgOpen Access
The analysis of linkages in demographic theory
Author(s) -
W. Brian Arthur
Publication year - 1984
Publication title -
demography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.099
H-Index - 129
eISSN - 1533-7790
pISSN - 0070-3370
DOI - 10.2307/2061031
Subject(s) - fertility , demographic analysis , population , birth rate , variable (mathematics) , linkage (software) , population growth , function (biology) , econometrics , demography , vital rates , demographic change , total fertility rate , mathematics , family planning , research methodology , sociology , biology , evolutionary biology , mathematical analysis , biochemistry , gene
Many seemingly different questions that arise in the analysis of population change can be phrased as the same technical question: How, within a given demographic model, would variable y change if the age- or time-specific function f were to change arbitrarily in shape and intensity? At present demography lacks the machinery to answer this question in analytical and general form. This paper suggests a method based on modern functional calculus for deriving closed-form expressions for the sensitivity of demographic variables to changes in input functions or schedules. It uses this “linkage method” to obtain closed-form expressions for the response of the intrinsic growth rate, birth rate, and age composition of a stable population to arbitrary marginal changes in its age patterns of fertility and mortality. It uses it also to obtain expressions for the transient response of the age composition of a nonstable population to time-varying changes in the birth sequence, and to age-specific fertility and mortality patterns that change over time. The problem of “bias” in period vital rates is also looked at.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom