z-logo
open-access-imgOpen Access
Saving energy through improving convection in a muffle furnace
Author(s) -
Alina Adriana Minea,
Adrian Dima
Publication year - 2008
Publication title -
thermal science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.339
H-Index - 43
eISSN - 2334-7163
pISSN - 0354-9836
DOI - 10.2298/tsci0803121m
Subject(s) - muffle furnace , heat transfer , mechanics , process (computing) , energy (signal processing) , distribution (mathematics) , mechanical engineering , thermal , computer science , radiant heating , materials science , process engineering , environmental science , thermodynamics , mathematics , engineering , physics , mathematical analysis , statistics , biochemistry , chemistry , calcination , operating system , catalysis
Incompressible forced convection heat transfer problems normally admit an extremely important simplification: the fluid flow problem can be solved without reference to the temperature distribution in the fluid. Thus, it can first find the velocity distribution and then put it in the energy equation as known information and solve for the temperature distribution. In this paper it is intended to expand the theoretic researches concerning heat processes intensification and their use in industrial practice. In conclusion the fundamental research with concrete technical applications represents a significant contribution to the development of knowledge in domain. By centralizing the experimental results, there can be said that there has been obtained an energetic saving of approximate 20% by using radiant panels. By fitting the experimental data there has been obtained an optimum of the panels' positioning of x = 118.71 mm. In conclusion, changing the working space by introducing some radiant panels inside the furnace leads to important energy savings in the heating process, by increasing the heating rate of charge and by decreasing its residence time in the thermal equipment

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom