Micromechanical modeling of sulphate corrosion in concrete: Influence of ettringite forming reaction
Author(s) -
Michał Basista,
Witold Węglewski
Publication year - 2008
Publication title -
theoretical and applied mechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.279
H-Index - 6
eISSN - 2406-0925
pISSN - 1450-5584
DOI - 10.2298/tam0803029b
Subject(s) - ettringite , materials science , mortar , cementitious , micromechanics , cement , composite material , chemical engineering , portland cement , composite number , engineering
Two micromechanical models are developed to simulate the expansion of cementitious composites exposed to external sulphate attack. The difference between the two models lies in the form of chemical reaction of the ettringite formation (through-solution vs. topochemical). In both models the Fick's second law with reaction term is assumed to govern the transport of the sulphate ions. The Eshelby solution and the equivalent inclusion method are used to determine the eigenstrain of the expanding ettringite crystals in microcracked hardened cement paste. The degradation of transport properties is studied in the effective medium and the percolation regime. An initial-boundary value problem (2D) of expansion of a mortar specimen immersed in a sodium sulphate solution is solved and compared with available test data. The obtained results indicate that the topochemical mechanism is the one capable of producing the experimentally observed amount of expansion
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom