z-logo
open-access-imgOpen Access
Degradation and performance evaluation of PV module in desert climate conditions with estimate uncertainty in measuring
Author(s) -
Amor Fezzani,
I. Hadj Mahammed,
Saïd Drid,
Layachi Zaghba,
Abdelhak Bouchakour,
Messaouda Khennane Benbitour,
S. Hamid Oudjana
Publication year - 2017
Publication title -
serbian journal of electrical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.133
H-Index - 5
eISSN - 2217-7183
pISSN - 1451-4869
DOI - 10.2298/sjee1702277f
Subject(s) - degradation (telecommunications) , photovoltaic system , installation , environmental science , spectrum analyzer , reliability engineering , measurement uncertainty , computer science , desert (philosophy) , simulation , meteorology , statistics , engineering , mathematics , electronic engineering , electrical engineering , geography , telecommunications , philosophy , epistemology , operating system
The performance of photovoltaic (PV) module is affected by outdoor conditions. Outdoor testing consists installing a module, and collecting electrical performance data and climatic data over a certain period of time. It can also include the study of long-term performance under real work conditions. Tests are operated in URAER located in desert region of Ghardaïa (Algeria) characterized by high irradiation and temperature levels. The degradation of PV module with temperature and time exposure to sunlight contributes significantly to the final output from the module, as the output reduces each year. This paper presents a comparative study of different methods to evaluate the degradation of PV module after a long term exposure of more than 12 years in desert region and calculates uncertainties in measuring. Firstly, this evaluation uses three methods: Visual inspection, data given by Solmetric PVA-600 Analyzer translated at Standard Test Condition (STC) and based on the investigation results of the translation equations as ICE 60891. Secondly, the degradation rates calculated for all methods. Finally, a comparison between a degradation rates given by Solmetric PVA-600 analyzer, calculated by simulation model and calculated by two methods (ICE 60891 procedures 1, 2). We achieved a detailed uncertainty study in order to improve the procedure and measurement instrument

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom