z-logo
open-access-imgOpen Access
Lossless predictive compression of medical images
Author(s) -
Aleksej Avramović,
Slavica Savic
Publication year - 2011
Publication title -
serbian journal of electrical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.133
H-Index - 5
eISSN - 2217-7183
pISSN - 1451-4869
DOI - 10.2298/sjee1101027a
Subject(s) - lossless compression , image compression , lossy compression , data compression , artificial intelligence , computer science , redundancy (engineering) , compression (physics) , computer vision , pattern recognition (psychology) , image (mathematics) , image processing , materials science , composite material , operating system
Among the many categories of images that require lossless compression, medical images can be indicated as one of the most important category. Medical image compression with loss impairs of diagnostic value, therefore, there are often legal restrictions on the image compression with losses. Among the common approaches to medical image compression we can distinguish the transformation-based and prediction-based approaches. This paper presents algorithms for the prediction based on the edge detection and estimation of local gradient. Also, a novel prediction algorithm based on advantages of standardized median predictor and gradient predictor is presented and analyzed. Removed redundancy estimation was done by comparing entropies of the medical image after prediction

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom