Application of a fast and elitist multi-objective genetic algorithm to Reactive Power Dispatch
Author(s) -
S. Ramesh,
S. Kannan,
S. Baskar
Publication year - 2009
Publication title -
serbian journal of electrical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.133
H-Index - 5
eISSN - 2217-7183
pISSN - 1451-4869
DOI - 10.2298/sjee0901119s
Subject(s) - sorting , mathematical optimization , genetic algorithm , multi objective optimization , ac power , computer science , optimization problem , power (physics) , algorithm , mathematics , voltage , engineering , physics , quantum mechanics , electrical engineering
This paper presents an Elitist Non-Dominated Sorting Genetic Algorithm version II (NSGA-II), for solving the Reactive Power Dispatch (RPD) problem. The optimal RPD problem is a nonlinear constrained multi-objective optimization problem where the real power loss and the bus voltage deviations are to be minimized. Since the problem is treated as a true multi-objective optimization problem, different trade-off solutions are provided. The decision maker has an option to choose a solution among the different trade-off solutions provided in the pareto-optimal front. The standard IEEE 30-bus test system is used and the results show the effectiveness of NSGA-II and confirm its potential to solve the multi-objective RPD problem. The results obtained by NSGA-II are compared and validated with conventional weighted sum method using Real-coded Genetic Algorithm (RGA) and NSGA
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom