z-logo
open-access-imgOpen Access
Chronic lymphocytic leukaemia: An immunobiology approach
Author(s) -
Efterpi Kostareli,
Tatjana Smilevska,
Κώστας Σταματόπουλος,
Anastasia Kouvatsi,
Αchilles Anagnostopoulos
Publication year - 2008
Publication title -
srpski arhiv za celokupno lekarstvo
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.135
H-Index - 17
eISSN - 2406-0895
pISSN - 0370-8179
DOI - 10.2298/sarh0806319k
Subject(s) - ighv@ , cd38 , breakpoint cluster region , immunology , chronic lymphocytic leukemia , b cell receptor , antibody , gene , immunoglobulin heavy chain , medicine , antigen , disease , b cell , biology , genetics , leukemia , pathology , stem cell , cd34
B cell chronic lymphocytic leukaemia (CLL) is the most common adult leukaemia that follows an extremely variable clinical course. Several important prognostic parameters defining pathogenic and clinical subgroups of CLL have been identified and validated recently. The biological significance of immunoglobulin (Ig) heavy chain variable region gene (IgHV) mutational status and associated ZAP-70 over-expression, CD38 and chromosomal aberrations have enabled to identify patients at high risk for early disease progression and inferior survival. Moreover, studies of the B cell antigen receptor (BCR) structure and receptor signalling have been most helpful in revealing some new aspects of the biology of this disease. In particular, the analysis of IG genes has revealed that the expressed IgHV/IgKV/IgLV gene repertoires of CLL cells differ from those of normal B cells. A further unique feature of the CLL IG repertoire is the existence of subsets of cases with "stereotyped" BCRs. Accumulating molecular and phenotypic data support the notion that CLL development and evolution is not a simple scholastic event and strongly indicates a role for antigen in driving the cell of origin for at least some subsets of CLL cases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom