An extension of some integral inequalities
Author(s) -
Hacène Belbachir
Publication year - 2007
Publication title -
publikacija elektrotehnickog fakulteta - serija matematika
Language(s) - English
Resource type - Journals
eISSN - 2406-0852
pISSN - 0353-8893
DOI - 10.2298/petf0718028b
Subject(s) - extension (predicate logic) , inequality , mathematics , calculus (dental) , mathematical analysis , computer science , medicine , programming language , dentistry
We denote by R, n ≥ 1, the Euclidean space of dimension n endowed by the standard Lebesgue measure dx. Let L(Ω) be the space of real functions defined in Ω ⊂ R such that ∫ Ω f(x) dx <∞. In their paper [1], Bai-Ni Guo and Xin Jiang state the following: Theorem 1. Let Ω be a domain in R and f, g ∈ L(Ω) such that f ≥ 0 and g ≥ 0 and let I(f) = ∫ Ω f(x) dx. Further let h : Ω → R such that h ∈ L(Ω). If
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom