z-logo
open-access-imgOpen Access
Nanomaterials - what energy landscapes can tell us
Author(s) -
J. Christian Schön
Publication year - 2015
Publication title -
processing and application of ceramics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.326
H-Index - 15
eISSN - 2406-1034
pISSN - 1820-6131
DOI - 10.2298/pac1503157s
Subject(s) - nanomaterials , materials science , energy landscape , nanotechnology , substrate (aquarium) , silicon , ab initio , carbon fibers , monolayer , molecule , carbon nanotube , chemical physics , chemistry , composite number , optoelectronics , biochemistry , oceanography , organic chemistry , geology , composite material
Nanomaterials bridge the gaps between crystalline materials, thin films, and molecules, and are of great importance in the design of new classes of materials, since the existence of many modifications of a nano-object for the same overall composition allows us to tune the properties of the nanomaterial. However, the structural analysis of nano-size systems is often difficult and their structural stability is frequently relatively low. Thus, a study of their energy landscape is needed to determine or predict possible structures, and analyse their stability, via the determination of the minima on the landscape and the generalized barriers separating them. In this contribution, we introduce the major concepts of energy landscapes for chemical systems, and present summaries of four applications to nano-materials: a MgO monolayer on a sapphire substrate, possible quasitwo-dimensional carbon-silicon networks, the ab initio energy landscape of Cu4Ag4-clusters, and the possible arrangements of ethane molecules on an ideally smooth substrate

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom