z-logo
open-access-imgOpen Access
Predicting retention indices of PAHs in reversed-phase liquid chromatography: A quantitative structure retention relationship approach
Author(s) -
Nabil Bouarra,
Nawel Nadji,
Loubouri,
Amel Boudjemaa,
Khaldoun Bacharı,
Dejlloul Messadi
Publication year - 2020
Publication title -
journal of the serbian chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.227
H-Index - 45
eISSN - 1820-7421
pISSN - 0352-5139
DOI - 10.2298/jsc200219019b
Subject(s) - retention time , chromatography , robustness (evolution) , feature selection , linear regression , chemistry , stationary phase , monomer , mathematics , biological system , computer science , artificial intelligence , statistics , polymer , biochemistry , organic chemistry , gene , biology
: In this work, the liquid chromatography retention time in monomeric and polymeric stationary phases of PAHs was investigated. Quantitative structure retention relationship approach has been successfully performed. At first, 3224 molecular descriptors were calculated for the optimized PAHs structure using Dragon software. Afterwards, the modelled dataset was divided using the CADEX algorithm into two subsets for internal and external validation. The genetic algorithm-based on a multiple linear regression was used for feature selection of the most significant descriptors and the model development. The selected models included five descriptors: nCIR, GGI3, GGI4, JGT, and DP14 were used for the monomeric column and nR10, EEig01x, L1m, H5v, HATS6v were introduced for the polymeric column. Robustness and predictive performance of the suggested models were verified by both internal and external statistical validation. The good quality of the statistical parameters indicates the stability and predictive power of the suggested models. This study demonstrated that the suitability of the established models in the prediction of liquid chromatographic retention indices of PAHs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom