z-logo
open-access-imgOpen Access
Roughness measurement as an alternative method in evaluation of cavitation resistance of steels
Author(s) -
Marina Dojčinović
Publication year - 2013
Publication title -
hemijska industrija
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.147
H-Index - 19
eISSN - 2217-7426
pISSN - 0367-598X
DOI - 10.2298/hemind120320064d
Subject(s) - cavitation , materials science , surface roughness , surface finish , scanning electron microscope , optical microscope , composite material , metallurgy , acoustics , physics
The purpose of this study was to investigate possible application of roughness measurement in evaluation of resistance of steels in conditions of cavitation effect where these materials are usually applied. Steels which belong to different classes were selected for testing. Cavitation testing was performed by using the ultrasonic vibratory cavitation test set up (stationary specimen method). Mass loss and surface degradation of investigated samples were monitored during the exposure to cavitation erosion. Mass loss was measured by an analytical balance. The morphology of the damaged surfaces with the change of the test period was analyzed using scanning electron microscopy (SEM). The surface roughness tester was used to monitor changes of surface roughness during the test and for obtaining the line profile of surface samples after cavitation tests. Cross-sections of samples were made after testing and optical microscopy was used to obtain complete information about the roughness change and compare the images with the lines of the profile obtained by the measurement of roughness. It can be concluded that the behaviour of steels under conditions of cavitation can be estimated by measuring the change in surface roughness. Conclusions adopted on the basis of roughness changes are consistent with that based on measurements of mass loss and morphology of surface damage during cavitation testing time

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here