On nth roots of normal operators
Author(s) -
B. P. Duggal,
I. H. Kim
Publication year - 2020
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil2008797d
Subject(s) - mathematics , hilbert space , pure mathematics , class (philosophy) , property (philosophy) , operator (biology) , zero (linguistics) , type (biology) , discrete mathematics , linguistics , ecology , philosophy , biochemistry , chemistry , repressor , artificial intelligence , biology , computer science , transcription factor , gene , epistemology
For $n$-normal operators $A$ [2, 4, 5], equivalently $n$-th roots $A$ of normal Hilbert space operators, both $A$ and $A^*$ satisfy the Bishop--Eschmeier--Putinar property $(\beta)_{\epsilon}$, $A$ is decomposable and the quasi-nilpotent part $H_0(A-\lambda)$ of $A$ satisfies $H_0(A-\lambda)^{-1}(0)=(A-\lambda)^{-1}(0)$ for every non-zero complex $\lambda$. $A$ satisfies every Weyl and Browder type theorem, and a sufficient condition for $A$ to be normal is that either $A$ is dominant or $A$ is a class ${\mathcal A}(1,1)$ operator.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom