A criterion for univalent meromorphic functions
Author(s) -
Beiba Ould
Publication year - 2019
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil1908269o
Subject(s) - meromorphic function , mathematics , combinatorics , class (philosophy) , pure mathematics , simple (philosophy) , computer science , artificial intelligence , philosophy , epistemology
Let D = {z ∈ C, |z| < 1} and A(p) be the set of meromorphic functions in D possessing only simple pole at the point p with p ∈ (0 , 1). The aim of this paper is to give a criterion by mean of conditions on the parameters α, β ∈ C, λ > 0 and 1 ∈ A(p) for functions in the class denoted Pα,β ;h(p ; λ) of functions f ∈ A(p) satisfying a differential Inequality of the form α( z f (z) )′′ + β( z 1(z) )′′ ≤ λμ, z ∈ D to be univalent in the discD, where μ = ( 1−p 1+p ) 2 .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom