Degree distance of tensor product and strong product of graphs
Author(s) -
Sheeba Agnes
Publication year - 2014
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil1410185a
Subject(s) - mathematics , tensor product , combinatorics , degree (music) , multipartite , graph , product (mathematics) , discrete mathematics , pure mathematics , geometry , quantum , physics , quantum mechanics , quantum entanglement , acoustics
In this paper, we determine the degree distance of $G\times K_{r_0,r_1,\ldots,r_{n-1}}$ and $G\boxtimes K_{r_0,r_1,\ldots,r_{n-1}},$ where $\times$ and $\boxtimes$ denote the tensor product and strong product of graphs, respectively, and $K_{r_0,\,r_1,\,\ldots,\,r_{n-1}}$ denotes the complete multipartite graph with partite sets $ V_0, V_1,\ldots,V_{n-1}$ where $|V_j|=r_j,~~ 0\leq j\leq n-1$ and $n\geq 3.$ Using the formulae obtained here, we have obtained the exact value of the degree distance of some classes of graphs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom