Upper triangular operators with SVEP: Spectral properties
Author(s) -
B. P. Duggal
Publication year - 2007
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil0701025d
Subject(s) - mathematics , extension (predicate logic) , triangular matrix , banach space , spectral properties , property (philosophy) , pure mathematics , space (punctuation) , dual (grammatical number) , computer science , physics , art , philosophy , literature , epistemology , astrophysics , invertible matrix , programming language , operating system
Spectral properties of upper triangular operators T = (Tij)1•i;jn 2 B(X n), where X n = 'n i=1Xi and Xi is an infinite dimensional complex Banach space, such that Tii ¡ ‚ has the single-valued extension prop- erty, SVEP, for all complex ‚ are studied.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom