z-logo
open-access-imgOpen Access
Majority vote feature selection algorithm in software fault prediction
Author(s) -
Emin Borandağ,
Akın Özçift,
Deniz Kılınç,
Fatih Yücalar
Publication year - 2018
Publication title -
computer science and information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.244
H-Index - 24
eISSN - 2406-1018
pISSN - 1820-0214
DOI - 10.2298/csis180312039b
Subject(s) - computer science , software , c4.5 algorithm , eclipse , feature selection , data mining , machine learning , algorithm , software quality , software metric , artificial intelligence , identification (biology) , feature (linguistics) , software bug , task (project management) , software development , support vector machine , programming language , naive bayes classifier , linguistics , philosophy , physics , botany , management , astronomy , economics , biology
Identification and location of defects in software projects is an important task to improve software quality and to reduce software test effort estimation cost. In software fault prediction domain, it is known that 20% of the modules will in general contain about 80% of the faults. In order to minimize cost and effort, it is considerably important to identify those most error prone modules precisely and correct them in time. Machine Learning (ML) algorithms are frequently used to locate error prone modules automatically. Furthermore, the performance of the algorithms is closely related to determine the most valuable software metrics. The aim of this research is to develop a Majority Vote based Feature Selection algorithm (MVFS) to identify the most valuable software metrics. The core idea of the method is to identify the most influential software metrics with the collaboration of various feature rankers. To test the efficiency of the proposed method, we used CM1, JM1, KC1, PC1, Eclipse Equinox, Eclipse JDT datasets and J48, NB, K-NN (IBk) ML algorithms. The experiments show that the proposed method is able to find out the most significant software metrics that enhances defect prediction performance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom