z-logo
open-access-imgOpen Access
Improvement of physicochemical and rheological properties of kombucha fermented milk products by addition of transglutaminase and whey protein concentrate
Author(s) -
Mirela Iličić,
Spasenija Milanović,
Katarina Kanurić,
Vladimir Vukić,
Dajana Vukić
Publication year - 2016
Publication title -
acta periodica technologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.134
H-Index - 15
eISSN - 2406-095X
pISSN - 1450-7188
DOI - 10.2298/apt1647011i
Subject(s) - syneresis , food science , chemistry , fermentation , skimmed milk , rheology , water holding capacity , tissue transglutaminase , whey protein , water activity , pasteurization , water content , biochemistry , materials science , geotechnical engineering , engineering , composite material , enzyme
The objective of this work was to investigate the effect of addition of transglutaminase (TG-0.02%, w/w) and whey protein concentrate (WPC-0.03%, w/w), on quality of kombucha fermented milk product. Samples were prepared from pasteurized semi-skim milk (0.9%, w/w fat) and kombucha inoculum (10%, v/v). The pH values were measured during the fermentation of milk (lasted until reached 4.5). Syneresis, water holding capacity and the product texture (firmness and consistency,) were assessed after production. Rheological properties of kombucha fermented milk samples were measured during ten days of storage. The sample containing TG had the lowest syneresis (21 ml), the highest water holding capacity (62%) and the highest textural characteristics (firmness - 23.99g, consistency - 626.54gs) after production. The addition of WPC to milk improved the rheological properties, while the addition of TG improved it even to a significantly greater extent after the production and during 10 days of the storage. [Projekat Ministarstva nauke Republike Srbije, br. 46009

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom