z-logo
open-access-imgOpen Access
Synthesis and antiproliferative activity of some A- and B modified D-homo lactone androstane derivatives
Author(s) -
Marina P. Savić,
Katarina PenovGasi,
Marija N. Sakač,
Dimitar Jakimov,
Evgenija A. Djurendić
Publication year - 2013
Publication title -
acta periodica technologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.134
H-Index - 15
eISSN - 2406-095X
pISSN - 1450-7188
DOI - 10.2298/apt1344289s
Subject(s) - chemistry , androstane , lactone , hydrolysis , acetic acid , yield (engineering) , stereochemistry , acetylation , medicinal chemistry , organic chemistry , biochemistry , materials science , metallurgy , gene
An efficient synthesis of several A- and B-modified D-homo lactone androstane derivatives from 3β-hydroxy-17-oxa-D-homoandrost-5-en-16-one (1) is reported. 17-Oxa-Dhomoandrost- 4-ene-3,16-dione (2), obtained by the Oppenauer oxidation of compound 1, was converted via the unstable intermediate 3,16-dioxo-4,17-dioxa-D-homoandrostane- 5α-carboxaldehyde (3) to 17-oxa-D-homo-3,5-seco-4-norandrostan-5-one-3-carboxylic acid (4), which was also obtained directly from compound 2. Compound 1 was acetylated to give 17-oxa-D-homoandrost-5-en-16-on-3β-yl acetate (5) which was then oxidized with chromium(VI)-oxide in 50% acetic acid or with meta-chlorperbenzoic acid and chromium(VI)-oxide to yield compounds 6-8 and 5α-hydroxy-17-oxa-D-homoandrostane- 6,16-dion-3β-yl acetate (9), respectively. The oximination of compound 9 gave a mixture of 6(E)-hydroximino-5α-hydroxy-17-oxa-D-homoandrostan-16-on-3β-yl acetate (10) and 6(Z)-hydroximino-5α-hydroxy-17-oxa-D-homoandrostan-16-on-3β-yl acetate (11), the hydrolysis of which gave 6(E)-hydroximino-3β,5α-dihydroxy-17-oxa-D-homoandrostan- 16-one (12) and 6(Z)-hydroximino-3β,5α-dihydroxy-17-oxa-D-homoandrostan-16-one (13). 6-Nitrile-17-oxa-5,6-seco-D-homoandrostane-5,16-dion-3β-yl acetate (14) was obtained under the Beckmann fragmentation of compounds 10 and 11. Only pure and stable compounds (1, 2, 4, 5, 9 and 14) were tested in vitro on six malignant cell lines (MCF-7, MDA-MB-231, PC-3, HeLa, HT-29, K562) and one non-tumor MRC-5 cell line. Significant antiproliferative activity against MDA-MB-231 cells showed compounds 1, 5 and 9, while compound 2 exhibited a strong antiproliferative activity. Only compound 14 showed weak antiproliferative activity against MCF-7 cells. All tested compounds were not toxic on MRC-5 cells, whereas Doxorubicin was highly toxic on these cells. [Projekat Ministarstva nauke Republike Srbije, br. 172021

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom