Bioorganically doped sol-gel materials containing amyloglucosidase activity
Author(s) -
Beatrice Vlad-Oros,
M Dragomirescu,
Gabriela Preda,
Cecilia Savii,
Adrian Chiriac
Publication year - 2006
Publication title -
acta periodica technologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.134
H-Index - 15
eISSN - 2406-095X
pISSN - 1450-7188
DOI - 10.2298/apt0637179v
Subject(s) - chemistry , entrapment , amylase , immobilized enzyme , sol gel , chromatography , enzyme , aspergillus niger , molar ratio , ceramic , enzyme assay , nuclear chemistry , catalysis , materials science , organic chemistry , biochemistry , nanotechnology , medicine , surgery
Amyloglucosidase (AMG) from Aspergillus niger was encapsulated in various matrices derived from tetraethoxysilane, methyltriethoxysilane, phenyltriethoxysilane and vinyltriacetoxysilane by different methods of immobilization. The immobilized enzyme was prepared by entrapment in two steps, in one-step and entrapment/deposition, respectively. The activities of the immobilized AMG were assayed and compared with that of the native enzyme. The effects of the organosilaneprecursors and their molar ratios, the immobilization method, the inorganic support (white ceramic, red ceramic, purolite, alumina, TiO2, celite, zeolite) and enzyme loading upon the immobilized enzyme activity were tested. The efficiency of the sol-gel biocomposites can be improved through combination of the fundamental immobilization techniques and selection of the precursors
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom