z-logo
open-access-imgOpen Access
Determination of inorganic compounds in drinking water on the basis of house water heater scale, part 1: Determination of heavy metals and uranium
Author(s) -
Miloš Rajković,
Mirjana Stojanović,
Gordana K. Pantelić,
Dragan Tošković
Publication year - 2004
Publication title -
acta periodica technologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.134
H-Index - 15
eISSN - 2406-095X
pISSN - 1450-7188
DOI - 10.2298/apt0435131r
Subject(s) - calcite , strontium , uranium , chemistry , calcium carbonate , environmental chemistry , carbonate , mineral water , mineral , mineralogy , metallurgy , materials science , organic chemistry
The analysis of scale originated from drinking water on the house water heater, showed that scale is basically calcium carbonate that crystallizes hexagonally in the form of calcite. Scale taken as a sample from different spots in Belgrade – upper town of Zemun (sample 1) and Pančevo (sample 2) showed different configuration although it came from the same waterworks. That indicates either that the water flowing through waterworks pipes in different parts of the city is not the same or the waterworks net is not the same (age, maintaining, etc). All the elements which are dominant in drinking water (Ca, Mg, K, and Na), and which could be found in water by natural processes, are by their content far below the values regulated by law. The analysis also showed the presence of many metals: Ti, Pb, Zn, Cu Li, Sr, Cd, and Cr in the first sample, which are not found in the scale taken near Pančevo. The results obtained by calculating the mass concentration in drinking water on the basis of scale content, showed that both waters belonged to the category of low mineral waters. Contents of inorganic substances in these waters (117.85 mg/dm3 for sample 1 or 80.83 mg/dm3 for sample 2) are twice lower than the values predicted by the legislation. Gammaspectrometric analysis indicates the presence of radioactive elements – uranium and strontium which can influence human health

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom