z-logo
open-access-imgOpen Access
Metagenomic analysis of soil microbial communities
Author(s) -
Lidija Djokić,
Milan Savić,
Tanja Narančić,
Branka Vasiljević
Publication year - 2010
Publication title -
archives of biological sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.217
H-Index - 25
eISSN - 1821-4339
pISSN - 0354-4664
DOI - 10.2298/abs1003559d
Subject(s) - rhizosphere , metagenomics , biology , bacteria , 16s ribosomal rna , terminal restriction fragment length polymorphism , restriction fragment length polymorphism , soil bacteria , botany , soil microbiology , gene , genetics , polymerase chain reaction
Ramonda serbica and Ramonda nathaliae, rare resurrection plants growing in the Balkan Peninsula, produce a high amount of phenolic compounds as a response to stress. The composition and size of bacterial communities in two rhizosphere soil samples of these plants were analyzed using a metagenomic approach. Fluorescent in situ hybridization (FISH) experiments together with DAPI staining showed that the metabolically active bacteria represent only a small fraction, approximately 5%, of total soil bacteria. Using universal bacteria - specific primers 16S rDNA genes were amplified directly from metagenomic DNAs and two libraries were constructed. The Restriction Fragment Length Polymorphism (RLFP) method was used in library screening. Amongst 192 clones, 35 unique operational taxonomic units (OTUs) were determined from the rhizosphere of R. nathaliae, and 13 OTUs out of 80 clones in total from the library of R. serbica. Representative clones from each OTU were sequenced. The majority of sequences from metagenomes showed very little similarity to any cultured bacteria. In conclusion, the bacterial communities in the studied soil samples showed quite poor diversity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom