The role of resistance to bile salts and acid tolerance of exopolysaccharides (EPSS) produced by yogurt starter bacteria
Author(s) -
Hatice Boke,
Belma Aslım,
Gülçin Alp Avcı
Publication year - 2010
Publication title -
archives of biological sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.217
H-Index - 25
eISSN - 1821-4339
pISSN - 0354-4664
DOI - 10.2298/abs1002323b
Subject(s) - streptococcus thermophilus , bacteria , starter , lactobacillus , lactobacillus delbrueckii subsp. bulgaricus , microbiology and biotechnology , chemistry , food science , bile acid , biology , biochemistry , fermentation , genetics
The aim of this study was to investigate a possible relation between EPS production and resistance to bile salts and tolerance to low pH. Eight strains which produced the highest and lowest amount of EPS (16- 211mg/l) were selected among 54 bacteria isolated from yogurt. Additionally, they were tested for resistance to bile salts (0.15, 0.3 %) and tolerance to low pH (2.0-3.0). After treatment with bile salts and acid, viable bacteria (log cfu ml-1) were determined by surface plating. The high EPS producing strains (B3, G12, W22) showed a significant (P<0.05) protective effect against low pH (pH 2.0). All Streptococcus thermophilus strains showed a higher tolerance to bile salts than the Lactobacillus delbrueckii subsp. bulgaricus strains. The high EPS-producing S. thermophilus (W22, T12) and L. bulgaricus (B3, G2) strains showed a significant (P<0.01) protective effect against bile salts (0.3 %)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom