The Riemann zeta function and classes of infinite series
Author(s) -
Horst Alzer,
Junesang Choi
Publication year - 2017
Publication title -
applicable analysis and discrete mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.69
H-Index - 26
eISSN - 2406-100X
pISSN - 1452-8630
DOI - 10.2298/aadm1702386a
Subject(s) - mathematics , riemann zeta function , proof of the euler product formula for the riemann zeta function , series (stratigraphy) , euler's formula , riemann hypothesis , particular values of riemann zeta function , constant (computer programming) , harmonic number , pure mathematics , riemann xi function , arithmetic zeta function , function (biology) , prime zeta function , mathematical analysis , paleontology , evolutionary biology , computer science , biology , programming language
We present one-parameter series representations for the following series involving the Riemann zeta function Σ∞n=3 n odd ζ(n)/n sn and Σ∞n=2 n even ζ(n) n sn and we apply our results to obtain new representations for some mathematical constants such as the Euler (or Euler-Mascheroni) constant, the Catalan constant, log 2, ζ(3) and π.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom