Schultz polynomials of composite graphs
Author(s) -
Mehdi Eliasi,
Bijan Taerı
Publication year - 2008
Publication title -
applicable analysis and discrete mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.69
H-Index - 26
eISSN - 2406-100X
pISSN - 1452-8630
DOI - 10.2298/aadm0802285e
Subject(s) - mathematics , composite number , combinatorics , algebra over a field , pure mathematics , algorithm
For a connected graph $G$, the {sc Schultz} and modified {sc Schultz} polynomials, introduced by {sc I. Gutman:} {it Some relations between distance-based polynomials of trees.} Bulletin, Classe des Sciences Math'ematiques et Naturelles, Sciences math'{e}matiques, Vol. CXXXI, extbf{30} (2005) 1--7, are defined as$H_1(G,x)=fraccc{1}{2}sum { (delta_u+ delta_v) x^{d(u,v|G)}mid u,v in V(G), u eq v }$ and $H_2(G,x)=fraccc{1}{2}sum{ (delta_u delta_v) x^{d(u,v| G)}mid u,v in V(G), u eq v}$, respectively, where $delta_u$ is the degree of vertex $u$,$d(u,v| G)$ is the distance between $u$ and $v$ and $V(G)$ is thevertex set of $G$. In this paper we find identities for the{sc Schultz} and modified {sc Schultz} polynomials of the sum, join and composition of graphs. As an application of our results we findthe {sc Schultz} polynomial of $C_4$ nanotubes
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom