z-logo
open-access-imgOpen Access
О моноиде квадратичных вычетов
Author(s) -
Николай Николаевич Добровольский,
Алина Олеговна Калинина,
М. Н. Добровольский,
Николай Михайлович Добровольский
Publication year - 2019
Publication title -
čebyševskij sbornik
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.273
H-Index - 6
eISSN - 2587-7119
pISSN - 2226-8383
DOI - 10.22405/2226-8383-2018-19-3-95-108
Subject(s) - combinatorics , physics , mathematics , crystallography , chemistry
В работе изучается дзета-функция моноида квадратичных вычетов по простому модулю $p$. Моноид квадратичных вычетов задается равенством $$ M_{p,2}=\left\{a\in\mathbb{N}\left| \left(\frac{a}{p}\right)=1\right.\right\}=\bigcup_{\nu=1}^{\frac{p-1}{2}}\left(r_\nu+p\mathbb{N}_0\right), $$где $\mathbb{N}_0=\{0\}\bigcup\mathbb{N}$ и $r_1<r_2<\ldots<r_{\frac{p-1}{2}}$ --- наименьшая положительная система квадратичных вычетов по модулю $p$, соответственно, $r_{\frac{p+1}{2}}<\ldots<r_{p-1}$ --- наименьшая положительная система квадратичных невычетов по модулю $p$. Множество простых элементов моноида $M_{p,2}$ состоит из множества простых чисел $\mathbb{P}_p^{(1)}$ и множества псевдопростых чисел $\mathbb{P}_p^{(2)}\cdot\mathbb{P}_p^{(2)}$:$$P(M_{p,2})=\mathbb{P}_p^{(1)}\bigcup\left(\mathbb{P}_p^{(2)}\cdot\mathbb{P}_p^{(2)}\right),$$где множество простых чисел $\mathbb{P}$ разбивается на два бесконечных подмножества $\mathbb{P}_p^{(\nu)}$ $(\nu=1,2)$ и одноэлементное множество $\{p\}$:$$\mathbb{P}=\mathbb{P}_p^{(1)}\bigcup\mathbb{P}_p^{(2)}\bigcup\{p\}, \quad \mathbb{P}_p^{(\nu)}=\left\{q\in\mathbb{P}\left|\left(\frac{q}{p}\right)=3-2\nu\right.\right\} \quad (\nu=1,2).$$Моноид $M_{p,2}$ разлагается в произведение двух взаимно простых моноидов $M_{p,2}=M_{p,2}^{(1)}\cdot$ $\cdot M_{p,2}^{(2)}$, где$$M_{p,2}^{(\nu)}=\left\{a\in M_{p,2}\left| a=\prod_{j=1}^{n}q_j^{\alpha_j}, \, q_j\in\mathbb{P}_p^{(\nu)} \right.\right\}, \quad \nu=1,2.$$В статье изучаются свойства функции распределения простых элементов $\pi_{M_{p,2}^{(\nu)}}(x)$ для $\nu=1,2$. Отметим, что $\pi_{M_{p,2}}(x)=\pi_{M_{p,2}^{(1)}}(x)+\pi_{M_{p,2}^{(2)}}(x)$. Показано, что $$ \pi_{M_{p,2}^{(1)}}(x)=\frac{1}{2}\li x+O\left(\frac{x^{\beta_1}}{2}+\frac{p-1}2xe^{-c_9\sqrt{\ln x}}\right) $$ и $$ \pi_{M_{p,2}^{(2)}}(x)=\frac{x\ln\ln x}{2\ln x}+O\left(\frac{x}{(1-\beta_1)\ln{x}}\right), $$ где $\beta_1$ --- исключительный ноль исключительного характера $\chi_1$ по модулю $p$. В заключении рассмотрены актуальные задачи с дзета-функциями моноидов натуральных чисел, требующие дальнейшего исследования.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here