z-logo
open-access-imgOpen Access
Local Temperature Sensitivity Coefficients of a Deterred Spherical Single Base Gun Propellant
Author(s) -
Moulai Karim Boulkadid,
Michel Lefèbvre,
L. Jeunieau,
Alain Dejeaifve
Publication year - 2017
Publication title -
central european journal of energetic materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 25
eISSN - 2353-1843
pISSN - 1733-7178
DOI - 10.22211/cejem/71213
Subject(s) - propellant , sensitivity (control systems) , base (topology) , materials science , environmental science , aerospace engineering , engineering , mathematics , mathematical analysis , electronic engineering
In our previous investigation, we measured the global temperature sensitivity coefficient of a deterred spherical single base gun propellant following an experimental procedure that did not allows us to determine the local temperature sensitivity coefficients of the deterred and undeterred parts of the investigated propellant. In this paper, we propose an experimental methodology to measure the local temperature sensitivity coefficients of both parts of the spherical deterred gun propellant. This methodology can be summarized as follows: Firstly, we separated the ranges of pressure where the combustion of the deterred and the undeterred parts of the spherical propellant occurs by means of infrared (IR) microscopy measurements. Then the burning rate of the propellant as a function of pressure was calculated according to STANAG 4115 at different initial temperatures. Finally, we determined the local temperature sensitivity coefficients of each part of the spherical propellant.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom