z-logo
open-access-imgOpen Access
A New Approach of Fuzzy-Wavelet Method’s Implementation in Time Series Analysis
Author(s) -
Seng Hansun,
Subanar Subanar
Publication year - 2011
Publication title -
ijccs (indonesian journal of computing and cybernetics systems)
Language(s) - English
Resource type - Journals
eISSN - 2460-7258
pISSN - 1978-1520
DOI - 10.22146/ijccs.2020
Subject(s) - wavelet , fuzzy logic , computer science , adaptive neuro fuzzy inference system , data mining , time series , robustness (evolution) , defuzzification , cascade algorithm , software , wavelet transform , algorithm , discrete wavelet transform , fuzzy control system , fuzzy set , artificial intelligence , fuzzy number , machine learning , biochemistry , chemistry , gene , programming language
— Recently, many soft computing methods have been used and implemented in time series analysis. One of the methods is fuzzy hybrid model which has been designed and developed to improve the accuracy of time series prediction. Popoola has developed a fuzzy hybrid model which using wavelet transformation as a pre-processing tool, and commonly known as fuzzy-wavelet method. In this thesis, a new approach of fuzzy-wavelet method has been introduced. If in Popoola’s fuzzy-wavelet, a fuzzy inference system is built for each decomposition data, then on the new approach only two fuzzy inference systems will be needed. By that way, the computation needed in time series analysis can be pressed. The research is continued by making new software that can be used to analyze any given time series data based on the forecasting method applied. As a comparison there are three forecasting methods implemented on the software, i.e. fuzzy conventional method, Popoola’s fuzzy-wavelet, and the new approach of fuzzy-wavelet method. The software can be used in short-term forecasting (single-step forecast) and long-term forecasting. There are some limitation to the software, i.e. maximum data can be predicted is 300, maximum interval can be built is 7, and maximum transformation level can be used is 10. Furthermore, the accuracy and robustness of the proposed method will be compared to the other forecasting methods, so that can give us a brief description about the accuracy and robustness of the proposed method. Keywords —  fuzzy, wavelet, time series, soft computing

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom