z-logo
open-access-imgOpen Access
Shear force in angioplasty: its relation to catheter design and function
Author(s) -
T.N. Kinney,
Ming Fan,
Chin Ak,
JC Finn,
W G Hayden,
Fogarty Tj
Publication year - 1985
Publication title -
american journal of roentgenology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 196
eISSN - 1546-3141
pISSN - 0361-803X
DOI - 10.2214/ajr.144.1.115
Subject(s) - medicine , angioplasty , catheter , cardiology , surgery
The inability to successfully position angioplasty catheters and the occurrence of complications during angioplasty procedures can, in part, be related to the shear forces generated during catheter introduction. Shear forces are the axial contact forces that the catheter system exerts on the inner arterial surfaces during advancement. The shear forces exerted by three different catheter designs (coaxial dilator, coaxial balloon, and linear extrusion) were measured in normal and atherosclerotic arteries; in modeled stenoses of variable severity, length, and compliance; and in modeled vessel angulations. The results with modeled vessels show that the linear extrusion catheter reduces the level of shear forces, particularly in narrow, long, noncompliant stenoses and in tortuous vessels. The stenotic artery results also show that the linear extrusion catheter minimizes these forces in tight lesions. The relative differences in forces are explained by the mechanism of action for each catheter. The reported occurrences of technical difficulties, complications, and long-term patency rates are then interpreted on the basis of the relative differences in measured shear forces. The results of this study combined with preliminary clinical data indicate that linear extrusion should facilitate placement and reduce associated complications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here