z-logo
open-access-imgOpen Access
Enabling Community Through Social Media
Author(s) -
Anatoliy Gruzd,
Caroline Haythornthwaite
Publication year - 2013
Publication title -
journal of medical internet research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.446
H-Index - 142
eISSN - 1439-4456
pISSN - 1438-8871
DOI - 10.2196/jmir.2796
Subject(s) - centrality , social media , social network analysis , social network (sociolinguistics) , set (abstract data type) , vocabulary , perspective (graphical) , online community , computer science , world wide web , social relation , data science , psychology , internet privacy , social psychology , artificial intelligence , linguistics , philosophy , mathematics , combinatorics , programming language
Background Social network analysis provides a perspective and method for inquiring into the structures that comprise online groups and communities. Traces from interaction via social media provide the opportunity for understanding how a community is formed and maintained online. Objective The paper aims to demonstrate how social network analysis provides a vocabulary and set of techniques for examining interaction patterns via social media. Using the case of the #hcsmca online discussion forum, this paper highlights what has been and can be gained by approaching online community from a social network perspective, as well as providing an inside look at the structure of the #hcsmca community. Methods Social network analysis was used to examine structures in a 1-month sample of Twitter messages with the hashtag #hcsmca (3871 tweets, 486 unique posters), which is the tag associated with the social media–supported group Health Care Social Media Canada. Network connections were considered present if the individual was mentioned, replied to, or had a post retweeted. Results Network analyses revealed patterns of interaction that characterized the community as comprising one component, with a set of core participants prominent in the network due to their connections with others. Analysis showed the social media health content providers were the most influential group based on in-degree centrality. However, there was no preferential attachment among people in the same professional group, indicating that the formation of connections among community members was not constrained by professional status. Conclusions Network analysis and visualizations provide techniques and a vocabulary for understanding online interaction, as well as insights that can help in understanding what, and who, comprises and sustains a network, and whether community emerges from a network of online interactions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom