z-logo
open-access-imgOpen Access
Using Machine-Learned Bayesian Belief Networks to Predict Perioperative Risk of Clostridium Difficile Infection Following Colon Surgery
Author(s) -
Scott R. Steele,
Anton J. Bilchik,
John Eberhardt,
P. Kalina,
Aviram Nissan,
Eric K. Johnson,
Itzhak Avital,
Alexander Stojadinovic
Publication year - 2012
Publication title -
interactive journal of medical research
Language(s) - English
Resource type - Journals
ISSN - 1929-073X
DOI - 10.2196/ijmr.2131
Subject(s) - receiver operating characteristic , medicine , perioperative , bayesian network , clostridium difficile , machine learning , missing data , artificial intelligence , surgery , algorithm , computer science , antibiotics , microbiology and biotechnology , biology
Background Clostridium difficile (C-Diff) infection following colorectal resection is an increasing source of morbidity and mortality. Objective We sought to determine if machine-learned Bayesian belief networks (ml-BBNs) could preoperatively provide clinicians with postoperative estimates of C-Diff risk. Methods We performed a retrospective modeling of the Nationwide Inpatient Sample (NIS) national registry dataset with independent set validation. The NIS registries for 2005 and 2006 were used for initial model training, and the data from 2007 were used for testing and validation. International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes were used to identify subjects undergoing colon resection and postoperative C-Diff development. The ml-BBNs were trained using a stepwise process. Receiver operating characteristic (ROC) curve analysis was conducted and area under the curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) were calculated. Results From over 24 million admissions, 170,363 undergoing colon resection met the inclusion criteria. Overall, 1.7% developed postoperative C-Diff. Using the ml-BBN to estimate C-Diff risk, model AUC is 0.75. Using only known a priori features, AUC is 0.74. The model has two configurations: a high sensitivity and a high specificity configuration. Sensitivity, specificity, PPV, and NPV are 81.0%, 50.1%, 2.6%, and 99.4% for high sensitivity and 55.4%, 81.3%, 3.5%, and 99.1% for high specificity. C-Diff has 4 first-degree associates that influence the probability of C-Diff development: weight loss, tumor metastases, inflammation/infections, and disease severity. Conclusions Machine-learned BBNs can produce robust estimates of postoperative C-Diff infection, allowing clinicians to identify high-risk patients and potentially implement measures to reduce its incidence or morbidity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom