Open Access
Performance of Digital Contact Tracing Tools for COVID-19 Response in Singapore: Cross-Sectional Study
Author(s) -
Zhilian Huang,
Huiling Guo,
Yee-Mun Lee,
Eu Chin Ho,
Hou Ang,
Angela Chow
Publication year - 2020
Publication title -
jmir mhealth and uhealth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.356
H-Index - 50
ISSN - 2291-5222
DOI - 10.2196/23148
Subject(s) - contact tracing , real time locating system , medicine , covid-19 , medical emergency , tracing , bluetooth , emergency medicine , computer science , real time computing , telecommunications , pathology , infectious disease (medical specialty) , wireless , disease , operating system
Background Effective contact tracing is labor intensive and time sensitive during the COVID-19 pandemic, but also essential in the absence of effective treatment and vaccines. Singapore launched the first Bluetooth-based contact tracing app—TraceTogether—in March 2020 to augment Singapore’s contact tracing capabilities. Objective This study aims to compare the performance of the contact tracing app—TraceTogether—with that of a wearable tag-based real-time locating system (RTLS) and to validate them against the electronic medical records at the National Centre for Infectious Diseases (NCID), the national referral center for COVID-19 screening. Methods All patients and physicians in the NCID screening center were issued RTLS tags (CADI Scientific) for contact tracing. In total, 18 physicians were deployed to the NCID screening center from May 10 to May 20, 2020. The physicians activated the TraceTogether app (version 1.6; GovTech) on their smartphones during shifts and urged their patients to use the app. We compared patient contacts identified by TraceTogether and those identified by RTLS tags within the NCID vicinity during physicians’ 10-day posting. We also validated both digital contact tracing tools by verifying the physician-patient contacts with the electronic medical records of 156 patients who attended the NCID screening center over a 24-hour time frame within the study period. Results RTLS tags had a high sensitivity of 95.3% for detecting patient contacts identified either by the system or TraceTogether while TraceTogether had an overall sensitivity of 6.5% and performed significantly better on Android phones than iPhones (Android: 9.7%, iPhone: 2.7%; P <.001). When validated against the electronic medical records, RTLS tags had a sensitivity of 96.9% and specificity of 83.1%, while TraceTogether only detected 2 patient contacts with physicians who did not attend to them. Conclusions TraceTogether had a much lower sensitivity than RTLS tags for identifying patient contacts in a clinical setting. Although the tag-based RTLS performed well for contact tracing in a clinical setting, its implementation in the community would be more challenging than TraceTogether. Given the uncertainty of the adoption and capabilities of contact tracing apps, policy makers should be cautioned against overreliance on such apps for contact tracing. Nonetheless, leveraging technology to augment conventional manual contact tracing is a necessary move for returning some normalcy to life during the long haul of the COVID-19 pandemic.