z-logo
open-access-imgOpen Access
Compliance With Mobile Ecological Momentary Assessment of Self-Reported Health-Related Behaviors and Psychological Constructs in Adults: Systematic Review and Meta-analysis
Author(s) -
Marie Williams,
Hayley Lewthwaite,
François Fraysse,
Alexandra Gajewska,
Jordan Ignatavicius,
Katia Ferrar
Publication year - 2020
Publication title -
journal of medical internet research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.446
H-Index - 142
eISSN - 1439-4456
pISSN - 1438-8871
DOI - 10.2196/17023
Subject(s) - observational study , protocol (science) , medicine , data extraction , medline , clinical psychology , psychology , alternative medicine , pathology , political science , law
Background Mobile ecological momentary assessment (mEMA) permits real-time capture of self-reported participant behaviors and perceptual experiences. Reporting of mEMA protocols and compliance has been identified as problematic within systematic reviews of children, youth, and specific clinical populations of adults. Objective This study aimed to describe the use of mEMA for self-reported behaviors and psychological constructs, mEMA protocol and compliance reporting, and associations between key components of mEMA protocols and compliance in studies of nonclinical and clinical samples of adults. Methods In total, 9 electronic databases were searched (2006-2016) for observational studies reporting compliance to mEMA for health-related data from adults (>18 years) in nonclinical and clinical settings. Screening and data extraction were undertaken by independent reviewers, with discrepancies resolved by consensus. Narrative synthesis described participants, mEMA target, protocol, and compliance. Random effects meta-analysis explored factors associated with cohort compliance (monitoring duration, daily prompt frequency or schedule, device type, training, incentives, and burden score). Random effects analysis of variance ( P ≤.05) assessed differences between nonclinical and clinical data sets. Results Of the 168 eligible studies, 97/105 (57.7%) reported compliance in unique data sets (nonclinical=64/105 [61%], clinical=41/105 [39%]). The most common self-reported mEMA target was affect (primary target: 31/105, 29.5% data sets; secondary target: 50/105, 47.6% data sets). The median duration of the mEMA protocol was 7 days (nonclinical=7, clinical=12). Most protocols used a single time-based (random or interval) prompt type (69/105, 65.7%); median prompt frequency was 5 per day. The median number of items per prompt was similar for nonclinical (8) and clinical data sets (10). More than half of the data sets reported mEMA training (84/105, 80%) and provision of participant incentives (66/105, 62.9%). Less than half of the data sets reported number of prompts delivered (22/105, 21%), answered (43/105, 41%), criterion for valid mEMA data (37/105, 35.2%), or response latency (38/105, 36.2%). Meta-analysis (nonclinical=41, clinical=27) estimated an overall compliance of 81.9% (95% CI 79.1-84.4), with no significant difference between nonclinical and clinical data sets or estimates before or after data exclusions. Compliance was associated with prompts per day and items per prompt for nonclinical data sets. Although widespread heterogeneity existed across analysis (I 2 >90%), no compelling relationship was identified between key features of mEMA protocols representing burden and mEMA compliance. Conclusions In this 10-year sample of studies using the mEMA of self-reported health-related behaviors and psychological constructs in adult nonclinical and clinical populations, mEMA was applied across contexts and health conditions and to collect a range of health-related data. There was inconsistent reporting of compliance and key features within protocols, which limited the ability to confidently identify components of mEMA schedules likely to have a specific impact on compliance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom