z-logo
open-access-imgOpen Access
Feasibility of a Real-Time Clinical Augmented Reality and Artificial Intelligence Framework for Pain Detection and Localization From the Brain
Author(s) -
XiaoSu Hu,
Thiago D. Nascimento,
Mary C Bender,
Theodore Hall,
Sean Petty,
Stephanie S. O’Malley,
Roger P Ellwood,
Niko Kaciroti,
Eric Maslowski,
Alexandre F. DaSilva
Publication year - 2019
Publication title -
journal of medical internet research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.446
H-Index - 142
eISSN - 1439-4456
pISSN - 1438-8871
DOI - 10.2196/13594
Subject(s) - augmented reality , artificial intelligence , computer science , psychology , medicine
Background For many years, clinicians have been seeking for objective pain assessment solutions via neuroimaging techniques, focusing on the brain to detect human pain. Unfortunately, most of those techniques are not applicable in the clinical environment or lack accuracy. Objective This study aimed to test the feasibility of a mobile neuroimaging-based clinical augmented reality (AR) and artificial intelligence (AI) framework, CLARAi, for objective pain detection and also localization direct from the patient’s brain in real time. Methods Clinical dental pain was triggered in 21 patients by hypersensitive tooth stimulation with 20 consecutive descending cold stimulations (32°C-0°C). We used a portable optical neuroimaging technology, functional near-infrared spectroscopy, to gauge their cortical activity during evoked acute clinical pain. The data were decoded using a neural network (NN)–based AI algorithm to classify hemodynamic response data into pain and no-pain brain states in real time. We tested the performance of several networks (NN with 7 layers, 6 layers, 5 layers, 3 layers, recurrent NN, and long short-term memory network) upon reorganized data features on pain diction and localization in a simulated real-time environment. In addition, we also tested the feasibility of transmitting the neuroimaging data to an AR device, HoloLens, in the same simulated environment, allowing visualization of the ongoing cortical activity on a 3-dimensional brain template virtually plotted on the patients’ head during clinical consult. Results The artificial neutral network (3-layer NN) achieved an optimal classification accuracy at 80.37% (126,000/156,680) for pain and no pain discrimination, with positive likelihood ratio (PLR) at 2.35. We further explored a 3-class localization task of left/right side pain and no-pain states, and convolutional NN-6 (6-layer NN) achieved highest classification accuracy at 74.23% (1040/1401) with PLR at 2.02. Conclusions Additional studies are needed to optimize and validate our prototype CLARAi framework for other pains and neurologic disorders. However, we presented an innovative and feasible neuroimaging-based AR/AI concept that can potentially transform the human brain into an objective target to visualize and precisely measure and localize pain in real time where it is most needed: in the doctor’s office. International Registered Report Identifier (IRRID) RR1-10.2196/13594

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom