z-logo
open-access-imgOpen Access
Modelling of crack initiation in adhesively bonded Joint
Author(s) -
Hanan Alali,
Magd Abdel Wahab
Publication year - 2012
Publication title -
sustainable construction and design
Language(s) - English
Resource type - Journals
eISSN - 2295-9092
pISSN - 2032-7471
DOI - 10.21825/scad.v3i3.20577
Subject(s) - fracture mechanics , stress intensity factor , damage mechanics , singularity , structural engineering , cohesive zone model , materials science , joint (building) , mechanics , finite element method , mathematics , mathematical analysis , engineering , physics
 In this paper, a review of some techniques proposed in the literature for modelling crackinitiation in adhesively bonded joints is presented. The techniques reviewed are: a) the singular intensityfactor, b) the inherent flaw size, c) Cohesive-zone model (CZM) and d) Continuum Damage Mechanics(CDM). The singular intensity factor characterizes the stress singularity at the corner point and can beused as a failure criterion to predict crack initiation. The inherent flaw method technique assumes that asmall crack having a fraction of millimetres is initiated at the singular point in order to develop a fracturemechanics criterion for crack initiation. The strain energy release rate for an un-cracked specimen is usedto determine the size of the inherent flaw. The cohesive zone model (CZM) technique is based ondefining parameters from fracture mechanics test specimens and using them to model failure of the joints.Continuum Damage Mechanics makes use of thermodynamics principles in order to derive a damageevolution law. In this damage evolution law the damage variable (D) is expressed as a function of numberof cycles, applied stress range and triaxiality function. Furthermore, the possibility of using the eXtendedFinite Element Method (XFEM) to predict crack initiation is elaborated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here