z-logo
open-access-imgOpen Access
Comparisons of Forecasting for Survival Outcome for Head and Neck Squamous Cell Carcinoma by using Machine Learning Models based on Multi-omics
Author(s) -
Liying Mo,
Yuangang Su,
Jun Yuan,
Zhiwei Xiao,
Ziyan Zhang,
Xiuwan Lan,
Daizheng Huang
Publication year - 2022
Publication title -
current genomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.823
H-Index - 64
eISSN - 1875-5488
pISSN - 1389-2029
DOI - 10.2174/1389202923666220204153744
Subject(s) - random forest , machine learning , omics , artificial intelligence , lasso (programming language) , computer science , head and neck squamous cell carcinoma , bioinformatics , medicine , biology , head and neck cancer , cancer , world wide web
Background : Machine learning methods showed excellent predictive ability in a wide range of fields. For the survival of head and neck squamous cell carcinoma (HNSC), its multi-omics influence is crucial. This study attempts to establish a variety of machine learning multi-omics models to predict the survival of HNSC and find the most suitable machine learning prediction method. Methods : The HNSC clinical data and multi-omics data were downloaded from the TCGA database. The important variables were screened by the LASSO algorithm. We used a total of 12 supervised machine learning models to predict the outcome of HNSC survival and compared the results. In vitro qPCR was performed to verify core genes predicted by the random forest algorithm. Results : For omics of HNSC, the results of the twelve models showed that the performance of multi-omics was better than each single-omic alone. Results were presented, which showed that the Bayesian network(BN) model (area under the curve [AUC] 0.8250, F1 score=0.7917) and random forest(RF) model (area under the curve [AUC] 0.8002,F1 score=0.7839) played good prediction performance in HNSC multi-omics data. The results of in vitro qPCR were consistent with the RF algorithm. Conclusion : Machine learning methods could better forecast the survival outcome of HNSC. Meanwhile, this study found that the BN model and the RF model were the most superior. Moreover, the forecast result of multi-omics was better than single-omic alone in HNSC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here