z-logo
open-access-imgOpen Access
Robust real-time change detection in high jitter.
Author(s) -
Katherine M. Simonson,
Tian Ma
Publication year - 2009
Language(s) - English
Resource type - Reports
DOI - 10.2172/993911
Subject(s) - jitter , pixel , computer science , frame (networking) , artificial intelligence , computer vision , noise (video) , projection (relational algebra) , image sensor , algorithm , image (mathematics) , telecommunications
A new method is introduced for real-time detection of transient change in scenes observed by staring sensors that are subject to platform jitter, pixel defects, variable focus, and other real-world challenges. The approach uses flexible statistical models for the scene background and its variability, which are continually updated to track gradual drift in the sensor's performance and the scene under observation. Two separate models represent temporal and spatial variations in pixel intensity. For the temporal model, each new frame is projected into a low-dimensional subspace designed to capture the behavior of the frame data over a recent observation window. Per-pixel temporal standard deviation estimates are based on projection residuals. The second approach employs a simple representation of jitter to generate pixelwise moment estimates from a single frame. These estimates rely on spatial characteristics of the scene, and are used gauge each pixel's susceptibility to jitter. The temporal model handles pixels that are naturally variable due to sensor noise or moving scene elements, along with jitter displacements comparable to those observed in the recent past. The spatial model captures jitter-induced changes that may not have been seen previously. Change is declared in pixels whose current values are inconsistent with both models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom