Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling
Author(s) -
Greg Schussman
Publication year - 2010
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/992922
Subject(s) - computer science , visualization , scalability , flexibility (engineering) , rendering (computer graphics) , process (computing) , set (abstract data type) , human–computer interaction , annotation , database , operating system , data mining , computer graphics (images) , artificial intelligence , statistics , mathematics , programming language
In the Phase I SBIR we proposed a ParaView-based solution to provide an environment for individuals to actively collaborate in the visualization process. The technical objectives of Phase I were: (1) to determine the set of features required for an effect collaborative system; (2) to implement a two-person collaborative prototype; and (3) to implement key collaborative features such as control locking and annotation. Accordingly, we implemented a ParaView-based collaboration prototype with support for collaborating with up to four simultaneous clients. We also implemented collaborative features such as control locking, chatting, annotation etc. Due to in part of the flexibility provided by the ParaView framework and the design features implemented in the prototype, we were able to support collaboration with multiple views, instead of a simple give as initially proposed in Phase I. In this section we will summarize the results we obtained during the Phase I project. ParaView is complex, scalable, client-server application framework built on top of the VTK visualization engine. During the implementation of the Phase I prototype, we realized that the ParaView framework naturally supports collaboration technology; hence we were able to go beyond the proposed Phase I prototype in several ways. For example, we were ablemore » to support for multiple views, enable server-as well as client-side rendering, and manage up to four heterogeneous clients. The success we achieved with Phase I clearly demonstrated the technical feasibility of the ParaView based collaborative framework we are proposing in the Phase II effort. We also investigated using the web browser as one of the means of participating in a collaborative session. This would enable non-visualization experts to participate in the collaboration process without being intimidated by a complex application such as ParaView. Hence we also developed a prototype web visualization applet that makes it possible for interactive visualization over the web.« less
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom