z-logo
open-access-imgOpen Access
Operation and analysis of a supercritical CO2 Brayton cycle.
Author(s) -
Steve Wright,
Ross Radel,
Milton E. Ver,
P.S. Pickard,
Gary E Rochau
Publication year - 2010
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/984129
Subject(s) - brayton cycle , supercritical fluid , windage , gas compressor , process engineering , nuclear engineering , environmental science , mechanical engineering , working fluid , turbine , engineering , thermodynamics , physics
Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for use with solar, nuclear or fossil heat sources. The focus of this work has been on the supercritical CO{sub 2} cycle (S-CO2) which has the potential for high efficiency in the temperature range of interest for these heat sources, and is also very compact, with the potential for lower capital costs. The first step in the development of these advanced cycles was the construction of a small scale Brayton cycle loop, funded by the Laboratory Directed Research & Development program, to study the key issue of compression near the critical point of CO{sub 2}. This document outlines the design of the small scale loop, describes the major components, presents models of system performance, including losses, leakage, windage, compressor performance, and flow map predictions, and finally describes the experimental results that have been generated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom