z-logo
open-access-imgOpen Access
Capturing the uncertainty in adversary attack simulations.
Author(s) -
John L. Darby,
Traci Brooks,
Robert Berry
Publication year - 2008
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/983673
Subject(s) - adversary , uncertainty quantification , computer science , set (abstract data type) , measurement uncertainty , random variable , work (physics) , sampling (signal processing) , variable (mathematics) , mathematical optimization , mathematics , computer security , statistics , engineering , machine learning , mechanical engineering , mathematical analysis , filter (signal processing) , computer vision , programming language
This work provides a comprehensive uncertainty technique to evaluate uncertainty, resulting in a more realistic evaluation of PI, thereby requiring fewer resources to address scenarios and allowing resources to be used across more scenarios. For a given set of dversary resources, two types of uncertainty are associated with PI for a scenario: (1) aleatory (random) uncertainty for detection probabilities and time delays and (2) epistemic (state of knowledge) uncertainty for the adversary resources applied during an attack. Adversary esources consist of attributes (such as equipment and training) and knowledge about the security system; to date, most evaluations have assumed an adversary with very high resources, adding to the conservatism in the evaluation of PI. The aleatory uncertainty in PI is ddressed by assigning probability distributions to detection probabilities and time delays. A numerical sampling technique is used to evaluate PI, addressing the repeated variable dependence in the equation for PI.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom