z-logo
open-access-imgOpen Access
Nanosecond electrical explosion of thin aluminum wire in vacuum : experimental and computational investigations.
Author(s) -
Kyle Cochrane,
K. W. Struve,
S.E. Rosenthal,
Dillon H. McDaniel,
G. S. Sarkisov,
C. Deeney
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/974875
Subject(s) - magnetohydrodynamics , nanosecond , plasma , ionization , corona (planetary geology) , core (optical fiber) , atomic physics , wavelength , mechanics , voltage , materials science , physics , laser , optics , ion , nuclear physics , quantum mechanics , astrobiology , venus
The experimental and computational investigations of nanosecond electrical explosion of thin Al wire in vacuum are presented. We have demonstrated that increasing the current rate leads to increased energy deposited before voltage collapse. Laser shadowgrams of the overheated Al core exhibit axial stratification with a {approx}100 {micro}m period. The experimental evidence for synchronization of the wire expansion and light emission with voltage collapse is presented. Two-wavelength interferometry shows an expanding Al core in a low-ionized gas condition with increasing ionization toward the periphery. Hydrocarbons are indicated in optical spectra and their influence on breakdown physics is discussed. The radial velocity of low-density plasma reaches a value of {approx}100 km/s. The possibility of an overcritical phase transition due to high pressure is discussed. 1D MHD simulation shows good agreement with experimental data. MHD simulation demonstrates separation of the exploding wire into a high-density cold core and a low-density hot corona as well as fast rejection of the current from the wire core to the corona during voltage collapse. Important features of the dynamics for wire core and corona follow from the MHD simulation and are discussed

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom