z-logo
open-access-imgOpen Access
Plasmonic filters.
Author(s) -
Brandon Passmore,
Eric A. Shaner,
T. Barrick
Publication year - 2009
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/973849
Subject(s) - passband , materials science , center frequency , optoelectronics , bandwidth (computing) , wavelength , transmission (telecommunications) , optics , dielectric , plasmon , extraordinary optical transmission , optical filter , stopband , band pass filter , surface plasmon , surface plasmon polariton , telecommunications , computer science , physics , resonator
Metal films perforated with subwavelength hole arrays have been show to demonstrate an effect known as Extraordinary Transmission (EOT). In EOT devices, optical transmission passbands arise that can have up to 90% transmission and a bandwidth that is only a few percent of the designed center wavelength. By placing a tunable dielectric in proximity to the EOT mesh, one can tune the center frequency of the passband. We have demonstrated over 1 micron of passive tuning in structures designed for an 11 micron center wavelength. If a suitable midwave (3-5 micron) tunable dielectric (perhaps BaTiO{sub 3}) were integrated with an EOT mesh designed for midwave operation, it is possible that a fast, voltage tunable, low temperature filter solution could be demonstrated with a several hundred nanometer passband. Such an element could, for example, replace certain components in a filter wheel solution

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom