z-logo
open-access-imgOpen Access
The Decontamination and Recovery of Precious Meatals. Quarterly Progress Report Period from April 1, 1960 to July 1, 1960,
Publication year - 1960
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/973194
Subject(s) - human decontamination , scrap , residual , environmental science , process engineering , waste management , computer science , chemistry , engineering , algorithm , organic chemistry
This report is the first quarterly report under Contract AT(30-1)-2528 for the decontamination and recovery of precious metals from contaminated scrap. This program encompasses the recovery of gold, platinum, iridium, rhodium and palladium from scrap and contaminated laboratory ware, equipment, etc. which may be contaminated by alpha emitters (i.e., uranium, plutonium and possibly polonium or combinations of these), beta-gamma emitters such as fission products or all three sources of radiation. In addition the scrap can be chemically contaminated by base metals, graphite or other contaminants. Osmium, ruthenium or silver are not to be recovered. Since the scrap can exist in such a great variety of forms such as platinum-rhodium laboratory crucibles, graphite crucibles containing platinum-base metal alloys derived from vacuum fusion baths, insulated thermocouple wires, reactor liners, porous platinum filters, alloys such as Baker alloy 413 (60 Au, 25 Pd, 15 Pt) it may be necessary to devise specific methods for a given type of scrap. Nevertheless the basic chemistry is the same and information and methods applicable to single systems will apply directly to the more complicated ones. Accordingly the relatively simple systems would be investigated first and the more complicated ones later in the program. An essential and major contribution to the success of the program is to devise or adapt accurate and precise analytical chemical techniques for scrap identification, process control, purity of the final products and accountability control. Accordingly, the emphasis on chemical analysis will be proportionally greater during the early stages of the program. The residual activity level to be attained is presently stated at twice the standard deviation obtained in low background counters (alpha {approx}0.1 c/m, beta {approx} 5 c/m) of virgin platinum

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom